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A molecular graph is a graphical representation of a chemical structure which is constructed by using certain graph operation. 
Topological indices are global graph-theoretic parameters which are studied for molecular graphs and provide significant 
information related to physico-chemical properties of underlying chemical substances. Bipartite edge frustration is defined as 
the minimum number of edges whose deletion from the graph gives the bipartite spanning subgraph of given graph. Bipartite 
edge frustration is a topological index which is related to the chemical stability of various nanostructures such as Fullerenes. In 
this paper, the bipartite edge frustration of cactus chains are studied. We give an important conjecture generalizing this 
concept for whole family of cacti graphs at the end of the article. 
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1. Introduction 
 

Let ),(= EVG  be a simple graph, a graph without 

multiple edges and loops. A subgraph H  of G  is a 

graph whose set of vertices and set of edges are all subsets 

of G . A spanning subgraph is a subgraph that contains all 

the vertices of the original graph. The graph G  is called 

bipartite if the vertex set V  can be partitioned into two 

disjoint subsets 1V  and 2V  such that all edges of G  

have one endpoint in 1V  and the other in 2V . Bipartite 

edge frustration of a graph G , denoted by )(G , is the 

minimum number of edges that need to be deleted to obtain 

a bipartite spanning subgraph. 

It is easy to see that )(G  is a topological index and 

G  is bipartite if and only if )(G  = 0. Thus )(G  is a 

measure of bipartivity. It is a well-known fact that a graph 

G  is bipartite if and only if G  does not have odd cycles. 

Holme, Liljeros and Edling introduced the edge frustration 

as a measure in the context of complex network [15]. 

Fajtlowicz claimed that the chemical stability of 

fullerenes is related to the minimum number of 

vertices/edges that need to be deleted to make a fullerene 

graph bipartite [6, 7]. We mention here that before 

publishing the mentioned papers of Fajtlowicz, Schmalz et 

al. [19] observed that the isolated pentagon fullerenes (IPR 

fullerenes) have the best stability. Doslic [3], presented 

some computational results to confirm this relationship. So 

it is natural to ask about relationship between the degree of 

non-bipartivity and stability of chemical structures such as 

nanotubes, polyomino and cactus chains. 

Throughout this paper all graphs considered are finite 

and simple. Our notations are standard and taken mainly 

from [8, 10]. We encourage the reader to consult papers by 

Doslic [3, 4, 5] for background material and more 

information on the problem. 

We also encourage the reader to consult papers [2, 11, 

12, 13, 14, 16, 17, 18] for some background material as well 

as basic computational methods on mathematical properties 

of nanomaterials and chemical networks.   

 

 
2. Motivations, results and discussion 
 

Topological indices play a vital role in the 

QSAR/QSPR studies, they predict certain 

physico-chemical properties of chemical compounds like 

nanotubes, nanocones, dendrimers, polyomino and cactus 

chains. Bipartite edge frustration is a topological index 

which correlate the chemical stability of Fullerenes and 

other chemical structures. 

Ashrafi and co-authors [9] computed the bipartite edge 

frustration of various infinite families of carbon nanotubes. 

Doslic et al. [3, 4] studied the bipartite edge frustration of 

fullerenes. So its natural to ask for the bipartite edge 

frustration of polyomino and cactus chains which play an 

important role in polymer chemistry. In this paper, the 

bipartite edge frustration of various cactus chains is 

strong-minded.   

 

2.1  Cactus chains 

 

In this paper we consider a class of simple linear 

polymers called cactus chains. Cactus graphs were first 

known as Husimi trees; they appeared in the scientific 

literature some sixty years ago in papers by Husimi and 

Riddell concerned with cluster integrals in the theory of 

condensation in statistical mechanics [1]. 

A cactus graph is a connected graph in which no edge 
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lies in more than one cycle. Consequently, each block of a 

cactus graph is either an edge or a cycle. If all blocks of a 

cactus G  are cycles of the same size i  , the cactus is i  - 

uniform. A triangular cactus is a graph whose blocks are 

triangles, i.e., a 3 -uniform cactus. A vertex shared by two 

or more triangles is called a cut-vertex. If each triangle of a 

triangular cactus G has at most two cut-vertices, and each 

cut-vertex is shared by exactly two triangles, we say that 

G  is a chain triangular cactus. By replacing triangles in 

this definitions by cycles of length 4  we obtain cacti 

whose every block is 4C . We call such cacti square cacti. 

Note that the internal squares may differ in the way they 

connect to their neighbors. If their cut-vertices are adjacent, 

we say that such a square is an ortho-square; if the 

cut-vertices are not adjacent, we call the square a 

parasquare. 

  In the same way, by replacing the 4C  by 

kCCC ,...,, 65  for some positive integer k  we get 

2-parametric class of cactus chains. We denote it 
k

nHT  

after their original name i.e. Husimi trees, where k  is the 

length of the cycle we replace and n  is the dimension of 

the chain. In this paper, we study the bipartite edge 

frustration of three families of cactus chains named as 

triangular, square and pentagonal cactus chains. We 

formulate a conjecture for the general k  in 
k

nHT  as well. 

Now we compute bipartite edge frustration of triangular 

cactus chains. 

 

2.2 Bipartite edge frustration of chain triangular  

    cactus 

 

We call the number of triangles in G  , the length of 

the chain. An example of a chain triangular cactus is shown 

in Fig. 1. Obviously, all chain triangular cacti of the same 

length are isomorphic. Hence, we denote the chain 

triangular cactus of length n  by nT  which is isomorphic 

to 
k

nHT  with 3=k .  

 

 
 

Fig. 1. Triangular chain cactus 
k

nHT  with 3=k . 

 

Now we compute bipartite edge frustration index of 

triangular cactus graph.   

Theorem 2.2: Let nT  be the triangular cactus graph, then  

nTn =)(  

   

Proof. Consider nT  be the triangular chain cactus. There 

exist no 2-coloring of nT  which turns out that 0>)( nT

. To prove that it is exactly n , we need to prove both of the 

inequalities i.e. nTn )(  and nTn )( . Since for 

1>n , there is a cut vertex between two triangles which 

means we only need to delete one edge in every cycle to 

make it a spanning tree which is surely a bipartite. In Fig 1, 

ie , ni 1,2,3,...,=  are the edges which are needed to be 

deleted to make it spanning tree. This implies that 

nTn )( . 

  On the other hand, it can easily be seen that there is no 

less number of edges which makes its edges deleted 

subgraph a bipartite spanning subgraph. This turns out that 

nTn )( . And the proof is complete.  

   

2.3  Bipartite edge frustration of chain square cacti 

 

By replacing triangles in the definitions of triangular 

cactus, by cycles of length 4  we obtain cacti whose every 

block is 4C  . We call such cacti, square cacti. An example 

of a square cactus chain is shown in Fig. 2. 

 

 

 
Fig. 2. An n -dimensional para-chain square cactus. 

 

 

We see that the internal squares may differ in the way 

they connect to their neighbors. If their cut-vertices are 

adjacent, we say that such a square is an ortho-square; if the 

cut-vertices are not adjacent, we call the square a 
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para-square. 

We denote the para-chain square cactus graph of length 

n  as nQ , and ortho-chain square cactus graph of length 

n  as nO . An n -dimensional ortho-chain square cactus 

graph is depicted in Fig. 3.  

  

 

 
 

Fig. 3. An ortho-chain square cactus of dimension n . 

 

Theorem 2.3: Let nQ  and nO  be the para and ortho 

chain square cacti respectively, then  

0=)(=)( nn OQ   

   

Proof. A graph G  is bipartite if and only if 

0=)(G . So, to prove them having zero bipartite edge 

frustration it suffices to prove them bipartite. Fig. 2 shows a 

2-coloring of nQ , in which bold vertices can be put in one 

partite set and rest of them can be put in other partition. 

Which clearly shows that nQ  is bipartite. 

In the similar manner, we can prove ortho-chain square 

cactus bipartite. Fig. 3 shows a bipartition of nO  having 

bold vertices in one partition and remaining in other 

partition. Hence nO  is bipartite.  

   

2.4 Bipartite edge frustration of chain pentagonal  

    cactus 

 

By replacing pentagons in the definition of triangular 

chain cactus, we get chain pentagonal cactus having each 

block as 5C . Of course, all chain pentagonal cacti of same 

dimension are isomorphic. For sake of convenience, we 

denote it as nP  which is equivalent to the 
5

nHT . Fig. 4 

shows a chain pentagonal cactus. 

 

 
 

Fig. 4. An n-dimensional chain pentagonal cactus. 

 

 

We compute bipartite edge frustration of chain 

pentagonal cactus in the following result.   

Theorem 2.4: Let nP  be the chain pentagonal square 

cactus, then  

nPn =)(  

   

Proof. We prove nPn =)( , we need to prove these two 

inequalities, nPn )( , and nPn )( . There does not 

exist any 2-coloring of nP , which turns us out 0>)( nP

. The presence of cut-vertex shared by any two pentagons 

ensures us that deletion of one edge from each 5-gon turns 

out a spanning tree of nP  for 1>n . In Fig. 4, ie , 

ni 1,2,3,...,=  are the edges which are needed to be 

deleted to make it spanning tree. Hence nPn )( . 

  It can easily be seen that there is no less number of edges 

present in nP  whose deletion gives a spanning tree. Hence 

nPn )( , which completes the proof. 

   

2.5 Conjecture on 
k

nHT  

 

By replacing a cycle of any length i.e. k  where k  is 

positive integer, we get general cactus chain i.e. 
k

nHT . If 

we study some parameter for triangular, square and 

pentagonal cactus chains, then it is natural to ask the study 

of this parameter for general cactus graph. After doing lot 

of calculation and their verification, we come across this 

result for 
k

nHT . Since we do not find some rigorous 

graph-theoretic mathematical arguments to prove this 

result. So we leave it to the readers for future research work 
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by formulating it as a conjecture.   

Conjecture: The bipartite edge frustration of 
k

nHT  is as 

follows: 

 









)2mod(1,

)2mod(00,
=)(

kn

k
HT k

n  

 

 

3. Conclusion and general remarks 
 

Topological indices are the numerical descriptors, 

which provide us very valuable information in theoretical 

chemistry and nanotechnology. Bipartite edge frustration is 

an important topological index which is closely related to 

the chemical stability of chemical compounds. This index 

has been extensively studied for nanotubes and Fullerenes, 

In this paper, we extend this concept to the cactus chains 

which are important structures in chemistry due to their 

chemical significance. We have found results for three 

classes of cactus chains and formulate a conjecture to make 

this concept generalized for whole family of cactus chain 

graphs. 

 

 

Acknowledgements 

 
1 

The first and fourth authors are partially supported by 

NUST Pakistan. 
2 

The author is supported by Chinese Government 

Scholarship at USTC, China. 
3 

The author is supported by CAS-TWAS President’s 

Fellowship USTC, China. 

 

 

References 

 

 [1] S. Alikhani, S. Jahari, M. Mehryar, R. Hasni,  

    Optoelectron. Adv. Mater. - Rapid Comm. 

    8, 955 (2014). 

 [2] M. V. Diudea, P. E. John, Covering polyhedral tori,  

     MATCH Commun. Math. Comput. Chem.  

     45, 109 (2002). 

 [3] T. Doslic, Chem. Phys. Lett. 412, 336 (2008). 

 [4] T. Doslic, D Vukicevic, Discrete Applied  

     Mathematics, 155, 1294 (2007). 

 [5] T. Doslic, J. Math. Chem., 31, 187 (2002). 

 [6] S. Fajtlowicz, http://www.math.uh.edu/ clarson/fajt. 

 [7] S. Fajtlowicz, C. E. Larson, Chem. Phys. Lett.,  

     377, 485 (2003). 

 [8] P. W. Fowler, D. E. Manolopoulos, An Atlas of  

     Fullerenes, Clarendon Press, Oxford, 1995. 

 [9] M. Ghojavand, A. R. Ashrafi, Dig. J. Nanomater.  

     Biostruc., 3, 209 (2008). 

[10] F. Harary, Graph Theory, Addison-Wesley, Reading,  

     MA, 1969. 

[11] S. Hayat, M. Imran, J. Comput. Theor. Nanosci., 

     12(1), 70 (2015). 

[12] S. Hayat, M. Imran, App. Math. Comp.,  

      240, 213 (2014). 

[13] S. Hayat, M. Imran, J. Comput. Theor. Nanosci., 

     12(7), 1 (2015). 

[14] S. Hayat, M. Imran, Studia UBB Chemia, LIX,  

     3, 113 (2014). 

[15] P. Holme, F. Liljeros, G.R. Edling, B.J. Kim,   

     Phys. Rev. E, 68, 056107 (2003). 

[16] M. Imran, S. Hayat, M. K. Shafiq, Optoelectron.  

     Adv. Mater. Rapid Comm., 8, 1218 (2014). 

[17] M. Imran, S. Hayat, M. K. Shafiq, Optoelectron.  

     Adv. Mater. Rapid Comm., 8, 948 (2014). 

[18] M. Imran, S. Hayat, M. K. Shafiq, Optoelectron.  

     Adv. Mater. Rapid Comm., In Press. 

[19] T. G. Schmalz, W. A. Seitz, D. J. Klein, G. E. Hite,  

     Chem. Phys. Lett., 130, 203 (1986).  

 

 
__________________________ 
*Corresponding author: sakander1566@gmail.com                       

 


